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Nonlinear thermal convection between two stress-free horizontal boundaries is studied 
using the modal equations for cellular convection. Assuming a large Rayleigh number 
R the boundary-layer method is used for different ranges of the Prandtl number u. 
The heat flux F is determined for the values of the horizontal wavenumber Q which 
maximizes F. For a large Prandtl number, u $. RQ(1og R)-l, inertial terms are insigni- 
ficant, a is either of order one (for r a H) or proportional to R b - +  (for u 4 Rf) and 
F is proportional to R*. For a moderate Prandtl number, 

(R-llog R)) g 0- < RQ(l0gR)-1, 

inertial terms first become significant in an inertial layer adjacent to the viscous 
buoyancy-dominated interior, and a and F are proportional to R* and 

R'irrqlog VR*).ili, 

respectively. For a small Prandtl number, R-' -g u < (R-llog R)*, inertial terms are 
significant both in the interior and the boundary layers, and a and P are proportional 
to (Ru)s'c (log Ru)-Pi and (Ra)i%(log Rr)iad, respectively. 

1. Introduction 
We consider the effect of nonlinear momentum advection terms on thermal con- 

vection between two stress-free horizontal boundaries at large Rayleigh number. 
Our study is based on the so-called modal equations for momentum and heat. Briefly, 
these equations are constructed from the full Boussinesq equations by expanding the 
fluctuating quantities in a complete set of functions of the horizontal co-ordinates, 
and then truncating the expansion. For a more detailed discussion of these equations 
and their derivations, we refer to the paper by Gough, Spiegel & Toomre (1975, 
henceforth referred to as GST). The same system of equations had been derived 
earlier, differently, by Roberts (1966) using a procedure proposed by Glansdorff & 
Prigogine ( 1964). 

In  the problem of cellular convection considered in GST, the solutions for the single 
mode equations are derived by the boundary-layer method. The case in which the 
horizontal wavenumber a is of order one is mainly considered, but the boundary- 
layer solution for the case of large a is discussed briefly there. We find that some of 
the results in GST for the latter case appear to disagree with our results. Because of the 
importance of the nonlinear convection at various ranges of the Prandtl number, we 
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found it useful to study the present problem. The disagreements with the results of 
GST are discussed in detail in $4 .  

In the present study, we are interested in finding the solution which maximizes the 
heat transport F .  The flow that maximizes F determines uniquely the horizontal 
wavenumber and gives an upper bound on the actual F .  The success of the previous 
upper bound studies of thermal convection which exhibited interesting features, useful 
bounds on F and similarities with observation encouraged us to undertake the present 
study of the single mode equations. It is hoped that it will provide us with a deeper 
insight into the subject of the nonlinear convection at various values of the Prandtl 
number. The reader is also referred to GST for a detailed discussion in support of the 
studies based on the single-mode equations for cellular convection. 

2. Governing equations 
We consider an infinite horizontal layer of fluid depth d bounded above and below 

by two stress-free planes maintained a t  temperatures To and To + AT(AT > 0) ,  respec- 
tively. The modal equations for cellular convection are derived from the Boussinesq 
equations for momentum and heat by expanding the fluctuating variables in the plan 
form functions fiE(x, y) of linear theory (GST). The non-dimensional steady state forms 
of these equations, after truncating the expansion by retaining only the first term, are: 

( 2 . l u )  C 
( D 2 - u 2 ) 2 W  = Ru20+-[2DW(D2-U2)W+W(D2-ua)Dw],  

0- 

( 0 2 -  u 2 )  0 + (1 - T V 0  + F )  w = C(2WDO + OD W ) .  ( 2 . l b )  

In  the above equations, JV is the vertical dependence of the vertical component 
Wfl of the velocity vector u, 0 is the vertical dependence of the deviation Ofl of the 
temperature from its horizontal average, R = agATd3/Kv is the Rayleigh number, 
CT = v/K is the Prandtl number, v is the kinematic viscosity, a is the coefficient of 
thermal expansion, K is the thermal diffusivity, and g is the acceleration due to 
gravity. Also, u is the horizontal wavenumber, D = d/dz,  F = (WO) is the heat flux, 
C = h(fl(x, Y ) ) ~  is the parameter derived from the planform functionf,(x, y). The bars 
denote horizontal average, and t,he angle brackets denote a further verticaI average 
over the whole layer. The constant C vanishes for rolls and rectangles and takes the 
value of 6-4 for the hexagonal planform. We shall assume C =# 0 and consider the value 
such as 6-4 as representative value of C .  For C = 0, the system (2.1) reduces to the 
so-called mean field equations, and the problem has been solved and discussed by 
Howard (1965), Roberts (1966) and others. 

We shall rescale our dependent variables such that 

= ( F R ) - ~  w, e = ( R / F ) * @ .  ( 2 . 2 )  

The governing equations then take the following forms: 

( 0 2 - u 2 ) 2 w  = u20+ (f) (FR)i  [ 2 D w ( D 2 - u 2 ) w + ~ ( D 2 - u 2 ) D ~ ] ,  ( 2 . 3 ~ )  

( 2 . 3 b )  
1 

FR 
- - - ( 0 2 - ~ . 2 ) 0 +  = C ( F R ) - ~ ( ~ ~ , J D B + O D ~ ) .  
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The constraint 

is obtained by multiplying (2.3b) by 0 and taking the vertical average over the layer 
which is used to evaluate F. The boundary conditions to be considered for the free 
surfaces a t  z = 0 , l  are 

= ~2~ = e = 0. (2.8;) 

The subsequent analysis and solution of (2.3)-(2.6) supposes throughout that both the 
Rayleigh number and the heat flux are large. Different classes of solutions are found for 
different orders of magnitude of the Prandtl number rr. In  each case, the principal 
focus is on the unique solution that maximizes F. 

3. Solution by boundary-layer method 
3.1. The m e  of a lurge Prandtl number 

The solution in the range Q 2 Rt is essentially that given by Howard (1965) for 
C = 0. The inertial terms are insignificant in this range and the boundary layer is not 
affected by rr. The boundary-layer structure consists of a nonuniform interior and a 
thin thermal layer of thickness 6 close to each boundary. In  the interior of the layer, 
viscous, buoyancy and convection terms are significant, and the dependent variables 
are of order one. In  the thermal layer, viscous, conduction and convection terms are 
important and we find that w - 6 and 0 - 6-l. The heat flux is independent of u and 
is maximized for the wavenumber a which is found to be of order one. The dependence 
of F and 6 on R is the same as in the case of C = 0. That is, P = 0-325( 1 + C2)-*R$ 
and a= 1.449(1 +CB)i%R-f. 

is qualitatively the same as in the 
range rr 2 R), except that a is now in the maximizing range a = O ( R * d ) .  Since a 
is now large, there exists aiso an intermediate layer 'of thickness a-l. The interior of 
the layer is now uniform and we find that w N a-l and 0 - a in this region and in the 
intermediate layer. In  the thermal layer, w - 6 and 8 - 8-l. The expressions for F 
and S are now: P = (2- 124)f ( 1 + Cs)-* R* and 6 = (2.124);) ( 1 + C2)ti- R-*. 

The solution in the range R)(logR)-l Q rr Q 

3.2. Tlx m e  of a moderate Prandtl number 
The wavenumber a is supposed to be large (which can be justified aposteriori), so that 
the convection cells are narrow. The solutions can be obtained by matching asymptot,ic 
approximations in the interior and three distinct regions near each boundary. With- 
out loss of generality, we shell restrict ourselves to the discussion of the boundary- 
layer structure near the lower boundary, since the boundary-layer structure near the 
upper boundary is essentially the same as the one near the lower boundary. 
In the interior of the layer, z is of order one. It is assumed that 

a4 -g F R  Q a W .  

The governing equations (2.3a)-(2.3b) yield, after using (3. l ) ,  the following cqimtions 

a% = 0, 0 0  = 1. (3 .2n ,  6) 

(3.1) 
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It is seen from (3.2) that the viscous, buoyancy and convection terms are important 
in the interior. Equations (3.2a, b) are satisfied by 

= a-l, e = a. (3.34 b) 

Near the boundary and adjacent to the interior is an inertial layer in which inertial 
terms are significant. We define e as the thickness of the layer and f: = z/e as the 
variable in the layer. We then find from (2.3), after applying matching conditions 
(matching the solutions to the corresponding solutions in the interior), that the equa- 
tions in the inertial layer are 

= e-3a3u- @e= 1, (3.4a, b) 
dw 

df:' 

where it is found appropriate to assume that 

e = Ca-la-3(FR)4 a-1. (3.5) 

The solution to ( 3 . 4 ~ )  satisfying the boundary condition w = 0 at f: = 0 satisfies the 
following equation 

(3.4b) and (3.6) yield the following asymptotic results 

w = a-@, e = a[-* as g+- 0. (3.7a, b) 

Closer to the boundary and adjacent to the inertial layer is an intermediate layer of 
thickness a-1, in which vertical derivatives are important in the inertial terms. 
Defining E = az as the variable in this layer, the equations (2.3) and matching condi- 
tions (matching the solutions to the corresponding solutions in the inertial layer) 
yield 

e+ca-la(m)* [ 2- d"(d2 -- l ) w + w ( & - l ) $ ]  = 0, ( 3 . 8 ~ )  
dE d f 2  

@e= 1. (3.8b) 

Solutions of (3.8a)-(3.8b) are given by 

w = (&)+ ($'R)-i t (3  log E-l)+ as f + 0, (3.94 

e = - (m)ifl-1(310gE-1)-* as g+  0. (3.9b) 

There is a further thinner layer closer to the boundary, in which thermal conduction 
is significant in the heat equation and 0 is brought to its zero boundary value. We 
define 8 as the thickness of the layer and 7 = z / 6  as the variable in the layer. The 
governing equations and matching conditions then give the following equations in 
the thermal layer: 

(:y 

(3 .10~)  

(3.10 b) 
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I n  deriving (3.10), it is found that we must have the following conditions 

where 
F'RA282 = 1, a8 4 1, ra2rY4 < Aa, (3.11a, b, c) 

The solutions to (3.10) satisfying (2.5) are 

where 
pa = 1 +c-2. 

(3.1ld) 

(3.12a, b )  

( 3.1 2 c) 

To determine P, we must evaluate the expressions (IVSlt) and ( ( l - w e ) a )  in (2.4). 
Within the boundary-layer approximation, using the results obtained above and 
keeping only the leading-order terms, we find that 

(lVOl2) = a4 + 26-1A-24, ( 3 . 1 3 ~ )  

((1 -we)%) = 261,, (3.13 b) 

where Il and I2 are the integrals 

(dO/dq)2 dq and (1 - q8)2dq 
/om 

in the thermal layer, respectively. Using (3.13) in (2.4) and maximizing P with respect 
to a, yield the following results 

where it is found that 
I = 11+12 = 1*062(1 +C2)*, 

I 

(3 .144  

(3.14 b) 

(3 .14~)  

(3.14d) 

(3.14e) 

Various assumptions including (3.1), (3.5) and (3.1l)lead us to the following conditions 
for the validity of the solutions 

(3.15) (R-l log R)f < n < Ri(log 

3.3. The case of a small Prandtl number 
The wavenumber a is again supposed to be large (which can be justified aposteriori). 
The boundary-layer structure for this case consists of a non-uniform interior and two 
distinct regions near each boundary. In the interior of the layer, z is of order one. It 
is assumed that 

a4 4 FRa, a6a2 < FR. (3.16a, b )  
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Using (3.16), the governing equations (2.3a)-(2.3b) yield 

8 = ~ C U - ~ ( F R ) * ~ D ~ ,  w e  = 1. (3.17a, b )  

It is seen from (3.17) that the inertial, buoyancy and convection terms are important 
in the interior. (3.17 a, b )  are satisfied by 

where the constant of integration is chosen so that w satisfies its boundary condition 
a t  z = 0. Near each surface and adjacent to the interior are intermediate layers of 
thickness a-l, in which vertical derivatives are important in the inertial terms. 
Defining Et = a( 1-2) and 5 = az as the variables in t,he upper end lower layers, 
respectively, the governing equations and matching conditions yield the following 
equations in bhe upper layer: 

(3.19a, b )  

Similarly, the governing equations yield (3.8) in the lower layer. Equation (3.8) yield 
(3.9) and (3.19a, 6 )  yield the following results 

w = ($ ( F W  (36,)) as 5t -+ 0, 

e = (F)' ( F R ) ~  (~EJ-) as Et +. 0. (3.20 b )  

Closer to each surface and adjacent to the intermediate layers are thermal layers. 
We define 6, and 6 as the thicknesses of the top and bottom layers, respectively. Also, 
yt = (1  - z)/6, and y = z / S  are defined to be the corresponding variables in these 
layers. We then find from (2.3), after applying matching conditions, that the equations 
in the lower thermal layer are (3.10) and in the upper t'hermal layer are 

( 3 . 2 0 ~ )  

( 3 . 2 1 ~ )  

and it is found necessary to require conditions (3.11) and 

where 
FRA:G! = 1 ,  a&, -g 1, ua2S:< Af, (3.22a, b, c )  

(3.22d) A,  = (5)' ( F R ) - ~  (3a8,)~.  

The solutions to (3.10) and (3.21) are (3.12) and 

w = A,% ( 3 . 2 3 ~ )  

(3.233) 
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The maximization of F proceeds as before, and we find 

St = (48)-) (761)& - (224)h (0) -$(logRa)-h, 

(3.24a) 

(3.24 b)  

(3 .24~)  

(3.24d) 

Variousassumptionsincluding (3.1), (3.11) and (3.22) leadus to the following condition 
for the validity of the solutions 

R-1 Q a Q (R-llog R)). (3.25) 

4. Discussion 
The boundary-layer analysis has shown that it is appropriate to divide the parameter 

space into four different regions. For u 2 M, the interior and the boundary-layer 
regions are unaffected by u. F is maximized by a value of a which is of order one and 
Fmax is independent of a. The effect of the inertial terms is sufficiently small such that 
the maximizing flow is essentially identical to that at infinite Prandtl number. For 
R)(log R)-l< u Q RQ, the inertial terms are still insignificant, as far as Fmax is con- 
cerned. Although F m a x  is independent of u, the flux-maximizing value of a depends 
strongly on u. The horizontal scale of motion is fixed by the flux-maximizing value of 
a, once the inertial terms balance the viscous and buoyancy terms in the intermediate 
layer. The upper and lower limits on u are determined by balancing the inertial terms 
with viscous terms in the intermediate layer and by using the fact that Fmax is un- 
affected by the interior solutions. For (R-llog R ) )  -g CJ R)(logR)-l, F m a x  is an in- 
creasing function of u, but the flux-maximizing value of a is independent of u. The 
order of magnitude of Fmax in this range is always less than its values in the above fist 
two regions. In  the thermal layers, the inertial term is important for a < 1 and the 
viscous term is important for n 9 1.  The boundary-layer structure near the lower 
boundary is essentially the same as the one near the upper boundary mainly because 
of the uniformity of the interior. The upper and lower limits on a are determined from 
various conditions including (3.1), (3.5) and (3.11). For R-l Q a < (R-'log R)*, Fmax 
and the flux-maximizing value of a are both increasing functions of a. The interior 
is now non-uniform. The intermediate and thermal layers near the lower boundary are 
essentially the same as the corresponding ones in the previous case. The boundary- 
layer structure near the upper boundary is now different from the one near the lower 
boundary. It should be realized of course that a corresponding solution exists for 
which the designations 'upper' and 'lower' are interchanged. The value of a which 
maximizes F is determined essentially by the contribution of the interior solution to 
the conduction term in the expression (2.4) for F. It depends strongly on a, since 
inertial terms are now significant in the interior and affect the relations there. The 
upper and lower limits on ca re  found from various assumptions including (3. 1)' (3.11) 
and (3.22). An interesting qualitative result of the present boundary-layer analysis 
is that Fmax and the flux-maximizing a are continuous f~inctions (within a lognritlimic 
term) of R and (+ throughout the range a & R-1. 
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In  the studies of modal equations for cellular convection presented in GST the case 
of large wavenumber convection in a layer with stress-free boundaries is briefly dis- 
cussed. The main results of GST for this case are summarized here. For cr % (Bu2)*, 
the boundary-layer structure consists of a non-uniform interior and a thermal layer 
near each boundary. F is maximized for the value of a which is of order one and 
F m a x  is proportional to R). For R-l < cr < (Ra2)f, a similar boundary-layer structure 
exists, but the boundary layer near the upper boundary is now different from the 
one near the lower boundary. F is maximized for the value of a which is proportional 
to and F m a x  K R*cri(log Rb)k .  For cr Q R-1, heat is transported mainly by con- 
duction and F = R(Ra/C)2, where A is a function of a, which attains its maximum 
value (2.498) lo6 at a = 2.37. Using the value of the flux-maximizing wavenumber 
in each of the first two ranges for cr, we find that both of these boundary-layer structures 
can similtaneously exist for Rf Q cr < R. There is a further undesirable result. For 
CT - (Ra2)*, or cr - R-l, there exists discontinuities in F m a x  and the flux-maximizing 
value of a. Comparing these results with those of the present study, we find the 
following conclusions. For cr 2 Rf, our main results are qualitatively equivalent to 
those in GST for cr (Ra2)*. For RQ(1og R)-1 Q cr Q R*, our results disagree with those 
in GST. For (R-llog R)) <.a Q RQ(1og R)-l, our boundary-layer structure, solutions 
for vertical velocity and temperature and the expression for Fmax all disagree with 
those in GST. The flux-maximizing value of a is, however, the same as that in GST. 
For R-1 Q cr < (R-1 log R)), our boundary-layer structure and solutions for vertical 
velocity and temperature appear to be cquivalent to those in GST for 

R-1 4 cr 4 (Ra2)f, 

but F m a x  and the flux-maximizing value of a disagree. As Q --z R-l, Fmax becomes O( 1) 
and can no longer be assumed large. For cr 4 R-l, our results (though not given in 
this paper) agree with those in GST. In  contrast to the results in GST, we do not have 
discontinuities in the expressions for F m a x  and the flux-maximizing value of a, and 
the boundary-layer structures do not overlap. 

The nonlinear BQnard convection contains three different types of nonlinearities: 
nonlinear interactions of bhe fluctuating velocity with the mean temperature gradient 
(referred to as WT), nonlinear interactions of the fluctuating velocities in the momen- 
tum equation (referred to as W W )  and deviation of WT from the nonlinear advection 
of temperature in the heat equation (referred to as WO).  Our present results, for 
cr R-1, indicate that WT is significant in both interior and the boundary layer 
regions and affects the solutions qualitatively. WW is significant in the boundary- 
layer regions, for a moderate or small u (except in the thermal layer for cr $ 1) and 
in the interior (for a small cr), and it affects the solutions qualitatively for a moderate 
or small cr. WO is significant only in the thermal layers and affects the solutions 
quantitatively. These results support the general belief that W W is relatively small 
whenever cr is large, and WO can be ignored whenever the qualitative features of the 
convection problem are concerned. The latter statement is not quite obvious, but it 
is expected to hold as far as heat transport processes are concerned. 

Finally, we present a critique of the modal approach which is especially desirable in 
view of its rather uncritical acceptance by various authors (Spiegel 1971; GST; 
Toomre, Gough & Spiegell977; Gough 1977) who have also given detailed discussions 
in favour of the studies based on the modal equations. The modal equations represent 
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a special approximation of the full Boussinesq equations in that a hexagonal symmetry 
of the horizontal dependence is presumed. It yields the undesirable results of a non- 
symmetric z-dependence of the solutions, once it is applied to a symmetric layer. 
There is also the possibility that preferred convective motion can not be described 
adequately by the modal equations. In  particular, some solutions of the full equations 
may exhibit a higher heat transport than those of the modal equations. The so-called 
‘flywheel’ solutions discovered first by Jones, Moore & Weiss (1976) and more recent 
two-dimensional studies along the same line (Clever & Busse 1981); Busse & Clever 
1981) represent some challenge to the solutions based on the modal equations for a 
low ~7. The asymmetry in the treatment of vertical and horizontal dependence in the 
modal equations of convection do indeed prevent the representation of solutions for 
which nonlinearities in the horizontal dependence of the problem is important. So 
far the study of the flywheel solutions has been restricted to the two-dimensional 
steady case. Although these solutions are known to be unstable to oscillatory in- 
stability, but it is quite likely that time dependent three-dimensional solutions with 
similar properties as the fly wheel solutions do exist and are responsible for high heat 
transport in a low-Prandtl-number fluid. The modal equations are adequate only in 
cases where the inherent time dependent turbulent convection does not cause large 
deviations in the average properties from the corresponding steady solutions. Another 
point concerning our single-mode approach is that convective flow having a moderate 
or small horizontal length scale is predicted, a result which is not supported by the 
experimental evidence. The multi-scales character of the real flow at large R also 
suggests that multi-modal solutions (Busse 1969) which allow greater heat flux than 
single-mode solutions and are characterized by several length scales are likely to be 
preferred at sufficiently large R. 

This work was supported by the Geophysics Section of U.S. National Science 
Foundation. The author would like to thank Professor F. H. Busse for his constructive 
criticism and stimulating comments. 
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